skip to main content


Search for: All records

Creators/Authors contains: "Talgam-Cohen, Inbal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a revenue-maximizing seller with m heterogeneous items and a single buyer whose valuation for the items may exhibit both substitutes and complements. We show that the better of selling the items separately and bundling them together— guarantees a [Formula: see text]-fraction of the optimal revenue, where d is a measure of the degree of complementarity; it extends prior work showing that the same simple mechanism achieves a constant-factor approximation when buyer valuations are subadditive (the most general class of complement-free valuations). Our proof is enabled by a recent duality framework, which we use to obtain a bound on the optimal revenue in the generalized setting. Our technical contributions are domain specific to handle the intricacies of settings with complements. One key modeling contribution is a tractable notion of “degree of complementarity” that admits meaningful results and insights—we demonstrate that previous definitions fall short in this regard. 
    more » « less
  2. Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders. 
    more » « less
  3. The field of optimal mechanism design enjoys a beautiful and well-developed theory, as well as several killer applications. Rules of thumb produced by the field influence everything from how governments sell wireless spectrum licenses to how the major search engines auction off online advertising. There are, however, some basic problems for which the traditional optimal mechanism design approach is ill suited—either because it makes overly strong assumptions or because it advocates overly complex designs. This article reviews several common issues with optimal mechanisms, including exorbitant communication, computation, and informational requirements; it also presents several examples demonstrating that relaxing the goal to designing an approximately optimal mechanism allows us to reason about fundamental questions that seem out of reach of the traditional theory. 
    more » « less
  4. null (Ed.)